top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Building Physics : Ambient Conditions, Functional Demands, and Building Part Requirements
Applied Building Physics : Ambient Conditions, Functional Demands, and Building Part Requirements
Autore Hens Hugo S. L
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023
Descrizione fisica 1 online resource (370 pages)
Disciplina 697
ISBN 3-433-61190-4
3-433-61189-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830055603321
Hens Hugo S. L  
Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Building Physics : Ambient Conditions, Functional Demands, and Building Part Requirements
Applied Building Physics : Ambient Conditions, Functional Demands, and Building Part Requirements
Autore Hens Hugo S. L
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023
Descrizione fisica 1 online resource (370 pages)
Disciplina 697
ISBN 3-433-61190-4
3-433-61189-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910841535603321
Hens Hugo S. L  
Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Autore Hens Hugo S. L.
Pubbl/distr/stampa Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Descrizione fisica 1 online resource (324 p.)
Disciplina 696
Soggetto topico Buildings - Environmental engineering
Soggetto genere / forma Electronic books.
ISBN 3-433-60127-5
1-283-43207-2
9786613432070
3-433-60091-0
3-433-60092-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Preface; 0 introduction; 0.1 subject of the book; 0.2 building physics and applied building physics; 0.3 units and symbols; 0.4 references; 1 outdoor and indoor conditions; 1.1 overview; 1.2 outdoor conditions; 1.2.1 dry bulb (or air) temperature; 1.2.2 solar radiation; 1.2.2.1 beam insolation; 1.2.2.2 diffuse insolation; 1.2.2.3 reflected insolation; 1.2.2.4 total insolation; 1.2.3 long wave radiation; 1.2.4 relative humidity and (partial water) vapour pressure; 1.2.5 wind; 1.2.5.1 wind speed; 1.2.5.2 wind pressure; 1.2.6 precipitation and wind-driven rain; 1.2.6.1 precipitation
1.2.6.2 wind driven rain1.2.7 standardized outside climate values; 1.2.7.1 design temperature; 1.2.7.2 thermal reference year; 1.2.7.3 moisture reference year; 1.2.7.4 equivalent outside temperature for condensation and drying; 1.2.7.5 very hot summer day, very cold winter day; 1.3 indoor conditions; 1.3.1 dry bulb (or air) temperature; 1.3.1.1 in general; 1.3.1.2 measured data; 1.3.2 relative humidity and (partial water) vapour pressure; 1.3.2.1 in general; 1.3.2.2 measured data; 1.3.3 water vapour release indoors; 1.3.4 indoor climate classes; 1.3.5 inside/outside air pressure differentials
1.4 references2 performance metrics and arrays; 2.1 definitions; 2.2 functional demands; 2.3 performance requirements; 2.4 some history; 2.5 performance arrays; 2.5.1 overview; 2.5.2 in detail; 2.5.2.1 functionality; 2.5.2.2 structural adequacy; 2.5.2.3 building physics related quality; 2.5.2.4 fire safety; 2.5.2.5 durability; 2.5.2.6 maintenance; 2.5.2.7 costs; 2.6 references; 3 functional requirements and performances at the building level; 3.1 thermal comfort; 3.1.1 in general; 3.1.2 physiological basis; 3.1.3 global steady state thermal comfort; 3.1.3.1 clothing
3.1.3.2 heat flow between the body and the environment3.1.3.3 comfort equations; 3.1.3.4 comfort parameters; 3.1.3.5 equivalent environments and comfort temperatures; 3.1.3.6 comfort appreciation; 3.1.4 local discomfort; 3.1.4.1 draft; 3.1.4.2 vertical air temperature difference; 3.1.4.3 radiant temperature asymmetry; 3.1.4.4 floor temperature; 3.1.5 transient conditions; 3.1.6 comfort-related enclosure performance; 3.2 health and indoor environmental quality; 3.2.1 in general; 3.2.2 health; 3.2.3 definitions; 3.2.4 relation between pollution outdoors and indoors
3.2.5 physical, chemical and biological contaminants3.2.5.1 process related; 3.2.5.2 material related; 3.2.5.3 ground related; 3.2.5.4 combustion related; 3.2.6 bio-germs; 3.2.6.1 bacteria; 3.2.6.2 mould; 3.2.6.3 dust mites; 3.2.6.4 insects; 3.2.6.5 rodents; 3.2.6.6 pets; 3.2.7 human related contaminants; 3.2.7.1 carbon dioxide (co2); 3.2.7.2 water vapour; 3.2.7.3 bio-odours; 3.2.7.4 environmental tobacco smoke; 3.2.8 perceived indoor air quality; 3.2.8.1 odour; 3.2.8.2 inside air enthalpy; 3.2.9 sick building syndrome; 3.2.10 contaminant control by ventilation
3.2.10.1 ventilation effectiveness
Record Nr. UNINA-9910139671703321
Hens Hugo S. L.  
Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Autore Hens Hugo S. L.
Pubbl/distr/stampa Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Descrizione fisica 1 online resource (324 p.)
Disciplina 696
Soggetto topico Buildings - Environmental engineering
ISBN 3-433-60127-5
1-283-43207-2
9786613432070
3-433-60091-0
3-433-60092-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Preface; 0 introduction; 0.1 subject of the book; 0.2 building physics and applied building physics; 0.3 units and symbols; 0.4 references; 1 outdoor and indoor conditions; 1.1 overview; 1.2 outdoor conditions; 1.2.1 dry bulb (or air) temperature; 1.2.2 solar radiation; 1.2.2.1 beam insolation; 1.2.2.2 diffuse insolation; 1.2.2.3 reflected insolation; 1.2.2.4 total insolation; 1.2.3 long wave radiation; 1.2.4 relative humidity and (partial water) vapour pressure; 1.2.5 wind; 1.2.5.1 wind speed; 1.2.5.2 wind pressure; 1.2.6 precipitation and wind-driven rain; 1.2.6.1 precipitation
1.2.6.2 wind driven rain1.2.7 standardized outside climate values; 1.2.7.1 design temperature; 1.2.7.2 thermal reference year; 1.2.7.3 moisture reference year; 1.2.7.4 equivalent outside temperature for condensation and drying; 1.2.7.5 very hot summer day, very cold winter day; 1.3 indoor conditions; 1.3.1 dry bulb (or air) temperature; 1.3.1.1 in general; 1.3.1.2 measured data; 1.3.2 relative humidity and (partial water) vapour pressure; 1.3.2.1 in general; 1.3.2.2 measured data; 1.3.3 water vapour release indoors; 1.3.4 indoor climate classes; 1.3.5 inside/outside air pressure differentials
1.4 references2 performance metrics and arrays; 2.1 definitions; 2.2 functional demands; 2.3 performance requirements; 2.4 some history; 2.5 performance arrays; 2.5.1 overview; 2.5.2 in detail; 2.5.2.1 functionality; 2.5.2.2 structural adequacy; 2.5.2.3 building physics related quality; 2.5.2.4 fire safety; 2.5.2.5 durability; 2.5.2.6 maintenance; 2.5.2.7 costs; 2.6 references; 3 functional requirements and performances at the building level; 3.1 thermal comfort; 3.1.1 in general; 3.1.2 physiological basis; 3.1.3 global steady state thermal comfort; 3.1.3.1 clothing
3.1.3.2 heat flow between the body and the environment3.1.3.3 comfort equations; 3.1.3.4 comfort parameters; 3.1.3.5 equivalent environments and comfort temperatures; 3.1.3.6 comfort appreciation; 3.1.4 local discomfort; 3.1.4.1 draft; 3.1.4.2 vertical air temperature difference; 3.1.4.3 radiant temperature asymmetry; 3.1.4.4 floor temperature; 3.1.5 transient conditions; 3.1.6 comfort-related enclosure performance; 3.2 health and indoor environmental quality; 3.2.1 in general; 3.2.2 health; 3.2.3 definitions; 3.2.4 relation between pollution outdoors and indoors
3.2.5 physical, chemical and biological contaminants3.2.5.1 process related; 3.2.5.2 material related; 3.2.5.3 ground related; 3.2.5.4 combustion related; 3.2.6 bio-germs; 3.2.6.1 bacteria; 3.2.6.2 mould; 3.2.6.3 dust mites; 3.2.6.4 insects; 3.2.6.5 rodents; 3.2.6.6 pets; 3.2.7 human related contaminants; 3.2.7.1 carbon dioxide (co2); 3.2.7.2 water vapour; 3.2.7.3 bio-odours; 3.2.7.4 environmental tobacco smoke; 3.2.8 perceived indoor air quality; 3.2.8.1 odour; 3.2.8.2 inside air enthalpy; 3.2.9 sick building syndrome; 3.2.10 contaminant control by ventilation
3.2.10.1 ventilation effectiveness
Record Nr. UNISA-996217896603316
Hens Hugo S. L.  
Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Applied building physics : boundary conditions, building performance and material properties / / Hugo S. L. Hens
Autore Hens Hugo S. L.
Pubbl/distr/stampa Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Descrizione fisica 1 online resource (324 p.)
Disciplina 696
Soggetto topico Buildings - Environmental engineering
ISBN 3-433-60127-5
1-283-43207-2
9786613432070
3-433-60091-0
3-433-60092-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Preface; 0 introduction; 0.1 subject of the book; 0.2 building physics and applied building physics; 0.3 units and symbols; 0.4 references; 1 outdoor and indoor conditions; 1.1 overview; 1.2 outdoor conditions; 1.2.1 dry bulb (or air) temperature; 1.2.2 solar radiation; 1.2.2.1 beam insolation; 1.2.2.2 diffuse insolation; 1.2.2.3 reflected insolation; 1.2.2.4 total insolation; 1.2.3 long wave radiation; 1.2.4 relative humidity and (partial water) vapour pressure; 1.2.5 wind; 1.2.5.1 wind speed; 1.2.5.2 wind pressure; 1.2.6 precipitation and wind-driven rain; 1.2.6.1 precipitation
1.2.6.2 wind driven rain1.2.7 standardized outside climate values; 1.2.7.1 design temperature; 1.2.7.2 thermal reference year; 1.2.7.3 moisture reference year; 1.2.7.4 equivalent outside temperature for condensation and drying; 1.2.7.5 very hot summer day, very cold winter day; 1.3 indoor conditions; 1.3.1 dry bulb (or air) temperature; 1.3.1.1 in general; 1.3.1.2 measured data; 1.3.2 relative humidity and (partial water) vapour pressure; 1.3.2.1 in general; 1.3.2.2 measured data; 1.3.3 water vapour release indoors; 1.3.4 indoor climate classes; 1.3.5 inside/outside air pressure differentials
1.4 references2 performance metrics and arrays; 2.1 definitions; 2.2 functional demands; 2.3 performance requirements; 2.4 some history; 2.5 performance arrays; 2.5.1 overview; 2.5.2 in detail; 2.5.2.1 functionality; 2.5.2.2 structural adequacy; 2.5.2.3 building physics related quality; 2.5.2.4 fire safety; 2.5.2.5 durability; 2.5.2.6 maintenance; 2.5.2.7 costs; 2.6 references; 3 functional requirements and performances at the building level; 3.1 thermal comfort; 3.1.1 in general; 3.1.2 physiological basis; 3.1.3 global steady state thermal comfort; 3.1.3.1 clothing
3.1.3.2 heat flow between the body and the environment3.1.3.3 comfort equations; 3.1.3.4 comfort parameters; 3.1.3.5 equivalent environments and comfort temperatures; 3.1.3.6 comfort appreciation; 3.1.4 local discomfort; 3.1.4.1 draft; 3.1.4.2 vertical air temperature difference; 3.1.4.3 radiant temperature asymmetry; 3.1.4.4 floor temperature; 3.1.5 transient conditions; 3.1.6 comfort-related enclosure performance; 3.2 health and indoor environmental quality; 3.2.1 in general; 3.2.2 health; 3.2.3 definitions; 3.2.4 relation between pollution outdoors and indoors
3.2.5 physical, chemical and biological contaminants3.2.5.1 process related; 3.2.5.2 material related; 3.2.5.3 ground related; 3.2.5.4 combustion related; 3.2.6 bio-germs; 3.2.6.1 bacteria; 3.2.6.2 mould; 3.2.6.3 dust mites; 3.2.6.4 insects; 3.2.6.5 rodents; 3.2.6.6 pets; 3.2.7 human related contaminants; 3.2.7.1 carbon dioxide (co2); 3.2.7.2 water vapour; 3.2.7.3 bio-odours; 3.2.7.4 environmental tobacco smoke; 3.2.8 perceived indoor air quality; 3.2.8.1 odour; 3.2.8.2 inside air enthalpy; 3.2.9 sick building syndrome; 3.2.10 contaminant control by ventilation
3.2.10.1 ventilation effectiveness
Record Nr. UNINA-9910831081803321
Hens Hugo S. L.  
Berlin, Germany : , : Wilhelm Ernst & Sohn technische Wissenschaften GmbH & Co. KG, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Building physics - heat, air and moisture : fundamentals, engineering methods, material properties and exercises / / Hugo S. L. Hens
Building physics - heat, air and moisture : fundamentals, engineering methods, material properties and exercises / / Hugo S. L. Hens
Autore Hens Hugo S. L.
Edizione [Fourth edition.]
Pubbl/distr/stampa John Wiley & Sons, Ltd
Descrizione fisica 1 online resource (415 pages)
Disciplina 697
Soggetto topico Physics
Power resources
Heating
Buildings - Environmental engineering
ISBN 3-433-61182-3
3-433-61184-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright -- Dedication -- Preface -- Acknowledgements -- About the Author -- List of Units and Symbols -- Units -- Symbols -- 0 Introduction -- 0.1 Subject of the Book -- 0.2 Building Physics? -- 0.3 Importance? -- 0.4 History -- Further Reading -- 1 Heat Transfer -- 1.1 In General -- 1.2 Conduction -- 1.3 Heat Exchange at Surfaces by Convection and Radiation -- 1.4 Buildingā€related Applications -- Problems and Solutions -- Further Reading -- 2 Mass Transfer -- 2.1 In General -- 2.2 Air -- 2.3 Water Vapour -- 2.4 Moisture -- Problems and Solutions -- Further Reading -- 3 Heat, Air and Moisture Combined -- 3.1 Why? -- 3.2 Material and Assembly Level -- 3.3 Whole Building Level -- Problems and Solutions -- Further Reading -- 4 Heat, Air and Moisture Material Property Values -- 4.1 In General -- 4.2 Dry Air and Water -- 4.3 Thermal Properties -- 4.4 Air Properties -- 4.5 Moisture Properties -- Further Reading -- Postscript -- Index -- End User License Agreement.
Altri titoli varianti Building Physics ‐ Heat, Air and Moisture
Record Nr. UNINA-9910830305403321
Hens Hugo S. L.  
John Wiley & Sons, Ltd
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Building physics - heat, air and moisture : fundamentals and engineering methods with examples and exercises / / Hugo S. L. Hens
Building physics - heat, air and moisture : fundamentals and engineering methods with examples and exercises / / Hugo S. L. Hens
Autore Hens Hugo S. L.
Pubbl/distr/stampa Berlin, Germany : , : Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH und Co., , [2007]
Descrizione fisica 1 online resource (xiii, 270 p. ) : ill
Disciplina 696
Soggetto topico Buildings - Environmental engineering
ISBN 3-433-60130-5
1-281-23917-8
9786611239176
3-433-60129-1
3-433-60002-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface. 0 Introduction. 0.1 Subject of the Book. 0.2 Building Physics. 0.2.1 Definition. 0.2.2 Criteria. 0.2.2.1 Comfort. 0.2.2.2 Health. 0.2.2.3 Architectural and Material Facts. 0.2.2.4 Economy. 0.2.2.5 Environment. 0.3 Importance of Building Physics. 0.4 History of Building Physics. 0.5 References. 0.6 Units and Symbols. 1 Heat Transfer. 1.1 Overview. 1.2 Conduction. 1.2.1 Conservation of Energy. 1.2.2 Fourier's Laws. 1.2.2.1 First Law. 1.2.2.2 Second Law. 1.2.3 Steady State. 1.2.3.1 What Is It? 1.2.3.2 One Dimension: Flat Walls. 1.2.3.3 Two Dimensions: Cylinder Symmetry. 1.2.3.4 Two and Three Dimensions: Thermal Bridges. 1.2.4 Transient Regime. 1.2.4.1 What is Transient? 1.2.4.2 Flat Walls, Periodic Boundary Conditions. 1.2.4.3 Flat Walls, Transient Boundary Conditions. 1.2.4.4 Two and Three Dimensions. 1.3 Convection. 1.3.1 Overview. 1.3.1.1 Heat Transfer at a Surface. 1.3.1.2 Convection. 1.3.2 Convection Typology. 1.3.2.1 Driving Forces. 1.3.2.2 Type of flow. 1.3.3 Calculating the Convective Surface Film Coefficient. 1.3.3.1 Analytically. 1.3.3.2 Numerically. 1.3.3.3 Dimensional Analysis. 1.3.4 Values for the Convective Surface Film Coefficient. 1.3.4.1 Walls. 1.3.4.2 Cavities. 1.3.4.3 Pipes. 1.4 Radiation. 1.4.1 Overview. 1.4.1.1 Thermal Radiation. 1.4.1.2 Quantities. 1.4.1.3 Reflection, Absorption and Transmission. 1.4.1.4 Radiant Surfaces. 1.4.2 Black Bodies. 1.4.2.1 Characteristics. 1.4.2.2 Radiation Exchange Between Two Black Bodies: The Angle Factor. 1.4.2.3 Properties of Angle Factors. 1.4.2.4 Calculating Angle Factors. 1.4.3 Grey Bodies. 1.4.3.1 Characteristics. 1.4.3.2 Radiation Exchange Between Grey Bodies. 1.4.4 Colored Bodies. 1.4.5 Practical Formulae. 1.5 Applications. 1.5.1 Surface Film Coefficients and Reference Temperatures. 1.5.1.1 Overview. 1.5.1.2 Inside Environment. 1.5.1.3 Outside Environment. 1.5.2 Steady-state, One-dimension: Flat Walls. 1.5.2.1 Thermal Transmittance and Interface Temperatures. 1.5.2.2 Thermal Resistance of a Non-ventilated Infinite Cavity. 1.5.2.3 Solar Transmittance. 1.5.3 Steady State, Cylindrical Coordinates: Pipes. 1.5.4 Steady-state, Two and Three Dimensions: Thermal Bridges. 1.5.4.1 Calculation by the Control Volume Method (CVM). 1.5.4.2 Thermal Bridges in Practice. 1.5.5 Transient, Periodic: Flat Walls. 1.5.6 Heat Balances. 1.6 Problems. 1.7 References. 2 Mass Transfer. 2.1 In General. 2.1.1 Quantities and Definitions. 2.1.2 Saturation Degree Scale. 2.1.3 Air and Moisture Transfer. 2.1.4 Moisture Sources. 2.1.5 Air, Moisture and Durability. 2.1.6 Linkages between Mass-and Energy Transfer. 2.1.7 Conservation of Mass. 2.2 Air Transfer. 2.2.1 In General. 2.2.2 Air Pressure Differences. 2.2.2.1 Wind. 2.2.2.2 Stack Effects. 2.2.2.3 Fans. 2.2.3 Air Permeances. 2.2.4 Air Transfer in Open-porous Materials. 2.2.4.1 Conservation of Mass. 2.2.4.2 Flow Equation. 2.2.4.3 Air Pressures. 2.2.4.4 One Dimension: Flat Walls. 2.2.4.5 Two- and Three-dimensions. 2.2.5 Air Flow Through Permeable Layers, Apertures, Joints, Leaks and Cavities. 2.2.5.1 Flow Equations. 2.2.5.2 Conservation of Mass, Equivalent Hydraulic Circuit. 2.2.6 Combined Heat- and Air Transfer. 2.2.6.1 Open-porous Materials. 2.2.6.2 Air Permeable Layers, Joints, Leaks and Cavities. 2.3 Vapour Transfer. 2.3.1 Water Vapour in the Air. 2.3.1.1 Overview. 2.3.1.2 Quantities. 2.3.1.3 Maximum Vapour Pressure and Relative Humidity. 2.3.1.4 Changes of State in Humid Air. 2.3.1.5 Enthalpy of Moist Air. 2.3.1.6 Characterizing Moist Air. 2.3.1.7 Applications. 2.3.2 Water Vapour in Open-porous Materials. 2.3.2.1 Overview. 2.3.2.2 Sorption Isotherm and Specific Moisture Ratio. 2.3.2.3 The Physics Behind. 2.3.2.4 Impact of Salts. 2.3.2.5 Consequences. 2.3.3 Vapour Transfer in the Air. 2.3.4 Vapour Transfer in Materials and Construction Parts. 2.3.4.1 Flow Equation. 2.3.4.2 Conservation of Mass. 2.3.4.3 Vapour Transfer by 'Equivalent' Diffusion. 2.3.4.4 Vapour Transfer by (Equivalent) Diffusion and Convection. 2.3.5 Surface Film Coeffi cients for Diffusion. 2.3.6 Some Applications. 2.3.6.1 Diffusion Resistance of a Cavity. 2.3.6.2 Cavity Ventilation. 2.3.6.3 Water Vapour Balance in a Room in Case of Surface Condensation and Drying. 2.4 Moisture Transfer. 2.4.1 Overview. 2.4.2 Moisture Transfer in a Pore. 2.4.2.1 Capillarity. 2.4.2.2 Water Transfer. 2.4.2.3 Vapour Transfer. 2.4.2.4 Moisture Transfer. 2.4.3 Moisture Transfer in Materials and Construction Parts. 2.4.3.1 Transfer Equations. 2.4.3.2 Conservation of Mass. 2.4.3.3 Starting, Boundary and Contact Conditions. 2.4.3.4 Remark. 2.4.4 Simplified Moisture Transfer Model. 2.4.4.1 Assumptions. 2.4.4.2 Applications. 2.5 Problems. 2.6 References. 3 Combined Heat, Air and Moisture Transfer. 3.1 Overview. 3.2 Assumptions. 3.3 Solution. 3.4 Conservation Laws. 3.4.1 Conservation of Mass. 3.4.2 Conservation of Energy. 3.5 Flow Equations. 3.5.1 Heat. 3.5.2 Mass, Air. 3.5.2.1 Open Porous Materials. 3.5.2.2 Air Permeable Layers, Apertures, Joints, Cracks, Leaks and Cavities. 3.5.3 Mass, Moisture. 3.5.3.1 Water Vapour. 3.5.3.2 Water. 3.6 Equations of State. 3.6.1 Enthalpy/Temperature and Water Vapour Saturation Pressure/Temperature. 3.6.2 Relative Humidity/Moisture Content. 3.6.3 Suction/Moisture Content. 3.7 Starting, Boundary and Contact Conditions. 3.7.1 Starting Conditions. 3.7.2 Boundary Conditions. 3.7.3 Contact Conditions. 3.8 Two Examples of Simplified Models. 3.8.1 Heat, Air and Moisture Transfer in Non-Hygroscopic, Non-Capillary Materials. 3.8.2 Heat, Air and Moisture Transfer in Hygroscopic Materials at Low Moisture Content. 3.9 References. 4 Postscript.
Record Nr. UNISA-996218301103316
Hens Hugo S. L.  
Berlin, Germany : , : Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH und Co., , [2007]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Performance-Based Building Design : From below Grade to Floors, Walls, Roofs, Windows and Finishes
Performance-Based Building Design : From below Grade to Floors, Walls, Roofs, Windows and Finishes
Autore Hens Hugo S. L
Edizione [2nd ed.]
Pubbl/distr/stampa Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2024
Descrizione fisica 1 online resource (592 pages)
ISBN 3-433-61203-X
3-433-61205-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Author -- List of Units and Symbols -- Introduction -- Chapter 1 What Does Performance‐Based Requirements Mean? -- 1.1 In General -- 1.2 Definitions -- 1.3 Advantages -- 1.4 Performance‐based Design of Buildings and Building Parts -- 1.4.1 The Process -- 1.4.2 Integrating the Approach -- 1.5 Impact -- Further Reading -- Chapter 2 Materials for a Correct Hygrothermal Performance -- 2.1 In General -- 2.2 Materials for Thermal Insulation -- 2.2.1 Why Needed? -- 2.2.2 Basic: A Low Apparent Thermal Conductivity -- 2.2.3 Other Properties -- 2.2.3.1 Mechanical -- 2.2.3.2 Moisture -- 2.2.3.3 Air -- 2.2.3.4 Temperature, IR and UV -- 2.2.3.5 Fire -- 2.2.4 Insulating Building Materials -- 2.2.4.1 How Characterized? -- 2.2.4.2 Lightweight Brick Masonry -- 2.2.4.3 Lightweight Concrete, Aerated Concrete -- 2.2.5 Insulation Materials -- 2.2.5.1 How Characterized? -- 2.2.5.2 Cork -- 2.2.5.3 Cellulose -- 2.2.5.4 Glass and Mineral Fibre -- 2.2.5.5 Cellular Glass -- 2.2.5.6 Expanded Polystyrene (EPS) -- 2.2.5.7 Extruded Polystyrene (XPS) -- 2.2.5.8 Polyurethane and Polyisocyanurate Foam (PUR and PIR) -- 2.2.5.9 Pressed Perlite (PPB) -- 2.2.5.10 Radiant Barriers -- 2.2.5.11 Transparent Insulation (TIM) -- 2.2.5.12 Vacuum Insulation (VIP) -- 2.2.6 Remark -- 2.3 Heat Storage Materials -- 2.4 Waterproof Layers -- 2.4.1 Basic Property -- 2.4.2 Short History -- 2.4.3 Bituminous Membranes -- 2.4.4 Polymer‐Bitumen Membranes -- 2.4.5 Polymer Membranes -- 2.5 Vapour Barriers and Vapour Retarders -- 2.6 Air Barriers and Air Retarders -- 2.7 Joint Sealants -- 2.7.1 Joints, Why Needed? -- 2.7.2 Joint Solutions and Finishing Options -- 2.7.3 Performance Checks -- 2.7.3.1 Mechanical -- 2.7.3.2 Building Physics Related -- 2.7.4 Sealant Classification -- 2.7.5 Sealant Choice -- 2.7.6 Structural Aspects.
2.7.7 Execution -- Further Reading -- Chapter 3 Clearing the Building Site, Excavations and Foundations -- 3.1 In General -- 3.2 Clearing -- 3.3 Excavating -- 3.4 Foundations -- 3.4.1 Which? -- 3.4.2 Performance Checks -- 3.4.2.1 Structural Integrity -- 3.4.2.2 Building Physics‐related -- 3.4.2.3 Durability -- 3.4.3 Foundation Solutions -- 3.4.3.1 Spread Foundations -- 3.4.3.2 Deep Foundations -- 3.4.4 Specific Problems -- 3.4.4.1 Eccentric Loaded Footings -- 3.4.4.2 Footings Under Wide Openings -- 3.4.4.3 Reinforcing and Deepening Foundations Below Existing Party Walls -- Further Reading -- Chapter 4 Parts and Spaces Below and on Grade -- 4.1 In General -- 4.2 Performance Checks -- 4.2.1 Structural Integrity -- 4.2.1.1 Stability -- 4.2.1.2 Strength and Stiffness -- 4.2.2 Building Physics: Heat, Air and Moisture -- 4.2.2.1 Air Tightness -- 4.2.2.2 Thermal Transmittance -- 4.2.2.3 Transient Response -- 4.2.2.4 Moisture Tolerance -- 4.2.2.5 Thermal Bridging -- 4.2.3 Building Physics: Acoustics -- 4.2.4 Durability -- 4.2.5 Fire Safety -- 4.2.6 Radon -- 4.3 Design and Construction -- 4.3.1 In General -- 4.3.2 Protective Measures -- 4.3.2.1 The Different Classes -- 4.3.2.2 Drainage -- 4.3.2.3 Watertight Encasement Inside -- 4.3.2.4 Watertight Encasement Outside -- 4.3.2.5 Waterproof Concrete -- Further Reading -- Chapter 5 Load‐Bearing Structures -- 5.1 In General -- 5.2 Options -- 5.3 Performance Checks -- 5.3.1 Structural Integrity -- 5.3.2 Fire Safety -- 5.4 Design Hints -- 5.4.1 Which? -- 5.4.2 Vertical Loads -- 5.4.3 Horizontal Loads -- 5.4.3.1 Massive Construction -- 5.4.3.2 Skeleton Construction -- 5.4.4 Dynamic Horizontal Loads -- Further Reading -- Chapter 6 Floors -- 6.1 In General -- 6.2 Assemblies -- 6.3 Performance Checks -- 6.3.1 Structural Integrity -- 6.3.2 Building Physics: Heat, Air and Moisture -- 6.3.2.1 Airtightness.
6.3.2.2 Thermal Transmittance -- 6.3.2.3 Transient Response -- 6.3.2.4 Moisture Tolerance -- 6.3.2.5 Thermal Bridging -- 6.3.3 Building Physics: Acoustics -- 6.3.3.1 Airborne Noise -- 6.3.3.2 Impact Noise -- 6.3.4 Durability -- 6.3.5 Fire Safety -- 6.4 Design and Construction -- 6.4.1 Floor Classification -- 6.4.2 Timber Floors -- 6.4.2.1 Spans up to 6 m -- 6.4.2.2 Spans Beyond 6 m -- 6.4.3 Concrete Decks and Prefabricated Structural Floor Units -- 6.4.3.1 Spans up to 6 m -- 6.4.3.2 Spans Beyond 6 m -- 6.4.4 Steel Floors -- 6.4.4.1 Spans up to 6 m -- 6.4.4.2 Spans Beyond 6 m -- Further Reading -- Chapter 7 Outer Walls and Roofs: Performance Checks -- 7.1 In General -- 7.2 Outer Walls -- 7.2.1 Structural Integrity -- 7.2.2 Building Physics: Heat, Air and Moisture -- 7.2.2.1 Air‐tightness -- 7.2.2.2 Thermal Transmittance -- 7.2.2.3 Transient Response -- 7.2.2.4 Moisture Tolerance -- 7.2.2.5 Thermal Bridging -- 7.2.3 Building Physics: Acoustics -- 7.2.4 Durability -- 7.2.5 Fire Safety -- 7.2.6 Maintenance and Economics -- 7.3 Roofs -- 7.3.1 Structural Integrity -- 7.3.2 Building Physics: Heat, Air and Moisture -- 7.3.2.1 Air Tightness -- 7.3.2.2 Thermal Transmittance -- 7.3.2.3 Transient Response -- 7.3.2.4 Moisture Tolerance -- 7.3.2.5 Thermal Bridging -- 7.3.2.6 Building Physics: Acoustics -- 7.3.3 Durability -- 7.3.4 Fire Safety -- 7.3.5 Maintenance and Economy -- Further Reading -- Chapter 8 Massive Outer Walls -- 8.1 Heavyweight Masonry -- 8.1.1 Some History -- 8.1.2 Performance Checks -- 8.1.2.1 Structural Integrity -- 8.1.2.2 Building Physics: Heat, Air and Moisture -- 8.1.2.3 Building Physics: Acoustics -- 8.1.2.4 Durability -- 8.1.2.5 Fire Safety -- 8.1.3 Conclusion -- 8.2 Lightweight Masonry -- 8.2.1 Types -- 8.2.2 Performance Checks -- 8.2.2.1 Structural Integrity -- 8.2.2.2 Building Physics: Heat, Air and Moisture.
8.2.2.3 Building Physics: Acoustics -- 8.2.2.4 Durability -- 8.2.2.5 Fire Safety -- 8.2.2.6 Maintenance -- 8.2.3 Design and Construction -- Further Reading -- Chapter 9 Massive Outer Walls Insulated Either Inside or Outside -- 9.1 Why? -- 9.2 Inside Insulation -- 9.2.1 Common Assemblies -- 9.2.2 Performance Checks -- 9.2.2.1 Structural Integrity -- 9.2.2.2 Building Physics: Heat, Air and Moisture -- 9.2.2.3 Building Physics: Acoustics -- 9.2.2.4 Durability -- 9.2.2.5 Fire Safety -- 9.2.2.6 Overall Evaluation -- 9.2.3 Design and Execution -- 9.3 Outside Insulation -- 9.3.1 Common Assemblies -- 9.3.2 Performance Checks -- 9.3.2.1 Structural Integrity -- 9.3.2.2 Building Physics: Heat, Air, Moisture -- 9.3.2.3 Building Physics: Acoustics -- 9.3.2.4 Durability -- 9.3.2.5 Fire Safety -- 9.3.2.6 Maintenance -- 9.3.2.7 Overall Evaluation -- 9.3.3 Design and Execution -- 9.3.3.1 Stud Systems -- 9.3.3.2 EIFS Systems -- Further Reading -- Chapter 10 Cavity Walls -- 10.1 Some History -- 10.2 Performance Checks -- 10.2.1 Structural Integrity -- 10.2.2 Building Physics: Heat, Air, Moisture -- 10.2.2.1 Airtightness -- 10.2.2.2 Thermal Transmittance -- 10.2.2.3 Transient Response -- 10.2.2.4 Moisture Tolerance -- 10.2.2.5 Thermal Bridging -- 10.2.3 Building Physics: Acoustics -- 10.2.4 Durability -- 10.2.5 Fire Safety -- 10.2.6 Maintenance -- 10.3 Design and Execution -- 10.3.1 In General -- 10.3.2 Airtight, as Few Thermal Bridges as Possible -- 10.3.3 Correctly Mounted Cavity Trays Where Needed -- 10.3.4 Excluding Air Looping and Wind Washing -- 10.4 Post‐filling Existing Cavity Walls -- Further Reading -- Chapter 11 Concrete Panel and Sheet‐Metal Outer Walls -- 11.1 In General -- 11.2 Concrete Panels -- 11.2.1 Common Assemblies -- 11.2.2 Performance Checks -- 11.2.2.1 Remark -- 11.2.2.2 Structural Integrity -- 11.2.2.3 Building Physics: Heat, Air and Moisture.
11.2.2.4 Building Physics: Acoustics -- 11.2.2.5 Durability -- 11.2.2.6 Fire Safety -- 11.2.2.7 Maintenance -- 11.2.3 Design and Execution -- 11.3 Sheet‐metal Options -- 11.3.1 Common Assemblies -- 11.3.2 Performance Checks -- 11.3.2.1 Structural Integrity -- 11.3.2.2 Building Physics: Heat, Air and Moisture -- 11.3.2.3 Building Physics: Acoustics -- 11.3.2.4 Durability -- 11.3.2.5 Fire Safety -- 11.3.2.6 Maintenance -- 11.3.3 Design and Construction -- Further Reading -- Chapter 12 Outer Walls with Transparent Insulation -- 12.1 In General -- 12.2 Assemblies -- 12.3 Performance Checks -- 12.3.1 Structural Integrity -- 12.3.2 Building Physics: Heat, Air and Moisture -- 12.3.2.1 Airtightness -- 12.3.2.2 Thermal Transmittance -- 12.3.2.3 Transient Response -- 12.3.2.4 Moisture Tolerance -- 12.3.3 Durability -- 12.4 Application? -- Further Reading -- Chapter 13 Low‐Slope Roofs -- 13.1 Some History -- 13.2 Low‐Slope Roof Coverings -- 13.2.1 In General -- 13.2.2 Bitumen and Polymer Bitumen Membranes -- 13.2.2.1 Number of Layers -- 13.2.2.2 Execution -- 13.2.2.3 Combinations With the Substrate -- 13.2.3 Polymer Membranes -- 13.2.4 Problems With Membranes -- 13.2.4.1 Bitumen -- 13.2.4.2 Polymers -- 13.3 Compact Low‐Slope Roofs -- 13.3.1 Roof Deck as Classification Variable -- 13.3.2 Performance Checks -- 13.3.2.1 Structural Integrity -- 13.3.2.2 Building Physics: Heat, Air and Moisture -- 13.3.2.3 Fire Safety -- 13.3.2.4 Maintenance -- 13.3.3 Design and Construction -- 13.3.3.1 Assemblies -- 13.3.3.2 Details -- 13.3.3.3 Special Uses -- 13.4 Protected Membrane Roofs -- 13.4.1 Performance Checks -- 13.4.1.1 Questions Advanced -- 13.4.1.2 Thermal Transmittance -- 13.4.1.3 Moisture Tolerance -- 13.4.1.4 Other Performances -- 13.4.2 Design and Construction -- 13.4.2.1 Roofing Membrane -- 13.4.2.2 Details.
13.4.2.3 Why MW as Insulation Material Nonetheless Failed?.
Record Nr. UNINA-9910840672503321
Hens Hugo S. L  
Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui